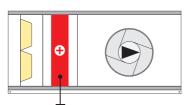


Теплообменники

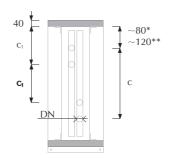
Ventus

Нагревание

Функция и применение


Устройство

Водяной нагреватель



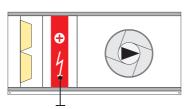
- Подогрев приточного воздуха.
- Подогрев приточного воздуха после его осушения.
- Применяется при наличии источника горячей воды (теплосеть или котельная).

Водяной нагреватель

- * VS 10÷40
- ** VS 55÷650

- медные трубки с пакетами алюминиевых реберламелей (Cu/Al)
- расстояние между ребрами-ламелями:
 VS 10÷15 2,1 мм
 VS 21÷650 2,5 мм
- толщина ламелей 0,1 мм (Al)
- толщина стенки трубы: 0,37 мм
- диаметр трубки:
 VS 10÷15 3/8"
 VS 21÷650 1/2"
- диаметр коллекторов:

VS	DN	Материал	Соединение	
10,15	20	Латунь	резьба	
21 30,40 (≤4R)	25	Латунь	резьба	
30,40 55,75 (≤4R) 100,120,150 (2R)	32	Латунь	резьба	
55 (6R,8R) 100,120,150 (4R) 180 (2R)	50	Сталь	резьба	
120 ÷ 650	80	Сталь	резьба	
180 ÷ 400 (8R) 500 ÷ 650 (≥2R)	2x80	Сталь	резьба	


- число рядов R: 2÷8
- патрубки для подключения питания водой имеют устройства для слива воды и отвода воздуха
- Патрубки для подключения питания находятся на стороне обслуживания агрегата.
- Подключение нагревателя по прямоточной схеме может привести к снижению его тепловой мощности на 10-20%.
- Вход горячего теплоносителя может быть через верхний или нижний патрубки в зависимости от стороны обслуживания агрегата, но так чтобы нагреватель работал с противоточным движением воздуха по отношению к горячему теплоносителю - теплообменник универсальный: правый/левый.

Электрический нагреватель

VS 10÷650

- Подогрев приточного воздуха.
- Подогрев воздуха после его осушения.
- Применяется при отсутствии горячей воды и при относительно небольших тепловых мощностях нагревателя.

Электрический нагреватель

- группа нагревательных элементов сопротивления, изготовленных из сплава Cr-Ni-Fe с мощностью 6 кВт/400 В каждый
- корпус: рама из оцинкованной стали
- клеммная планка
- каждый нагреватель стандартно имеет термостат, защищающий от перегрева
- При поставке оборудования с комплектом автоматики в нагревателе стандартно монтируется модуль управления.
- Подключение проводов к клеммной планке производится со стороны обслуживания агрегата.
- Мощность нагревателя может регулироваться плавно с помощью блока плавного регулирования (опциональный элемент автоматики) или же ступенчато (схема подключения представлена в Инструкции по монтажу и эксплуатации).

Рабочие параметры

- Максимальная температура теплоносителя: 150°C (при комплекте автоматики до: 140°C)
- Макс, рабочее давление теплоносителя: 1,6 МПа = 16 бар (испытано на 21 бар)
- Макс, допускаемая скорость потока воздуха: v=4,4 м/с
- Максимальное содержание гликоля: 50%
- Тепловая мощность: представлена в технических данных (Предложение или CCOL)
- Гидравлическое сопротивление нагревателя и расход теплоносителя: представлены в технических данных (Предложение или ССОL)
- Неплотность (зазор) между рамой теплообменника и корпусом менее 2-х мм
- Защита: допускаемая минимальная температура воздуха за нагревателем контролируется противозамораживающим термостатом (опциональный элемент).

Размеры и емкости водяных нагревателей

vs	Размеры		Объем			
VS	С [мм]	С ₁ [мм]	2R [л]	4R [л]	6R [л]	8R [л]
10	115	Х	0,70	1,40	2,10	Х
15	140	Х	1,04	2,08	3,12	Х
21	164	Х	1,77	3,54	5,31	7,08
30	294	Х	2,48	4,96	7,43	9,91
40	294	х	3,25	6,49	9,74	12,98
55	347	Х	4,71	9,42	14,14	18,85
75	459	Х	6,53	13,05	19,58	26,11
100	554	Х	8,54	17,08	25,62	34,15
120	586	Х	10,37	20,74	31,11	41,48
150	681	Х	12,87	25,74	38,61	51,47
180	872	380	15,62	31,24	46,86	62,47
230	872	379	19,2	38,39	57,59	76,78
300	1189	478	25,69	51,38	77,07	102,76
400	1380	554	34,71	69,42	104,13	138,84
500	1412	553	42,65	85,30	127,95	170,6
650	1888	711	56,79	113,58	170,37	227,16

Площадь теплообменной поверхности представлена на стр. 61

Соответствие нормам EN 305, EN 1216, EN 13053

- допускаемая скорость воздуха: v= 4,5м/с
- неплотность (зазор) между рамой теплообменника и корпусом менее 2-х мм
- греющие элементы соединены в группы каждая мощностью 18 кВт

Греющие мощности для отдельных типоразмеров агрегатов

vs	Р _{еі} [кВт]
10	18
15	36
21	36
30	54
40	72
55	90
75	90
100	108
120	108
150	108
180	108
230	108
300	108
400	108
500	212
650	212

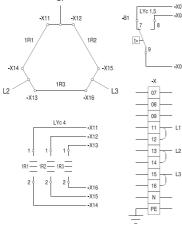


Схема подключения нагревательных элементов

Вспомогательные материалы

Тепловая мощность водяного нагревателя

Мощность нагревателя для повышения температуры потока воздуха V[м³/ч] от точки 1 до точки 2 (x=const.)

Мощность водяного нагревателя по воде

$$\mathbf{Q} = \mathbf{M}_{w} \bullet \mathbf{c}_{pw}(\mathbf{t}_{w1} - \mathbf{t}_{w2}) \ [\kappa \mathbf{B} \mathbf{T}]$$

 $t_{w1}[^{\circ}C]$ – температура воды перед нагревателем $t_{w2}[^{\circ}C]$ – температура воды за нагревателем $M_{w}[\kappa r/c]$ - расход воды

с и = 4,19 кДж/кгК – удельная теплоемкость воды

Мощность водяного нагревателя (по воздуху) t_2

$Q = V/3600 \cdot \rho_p \cdot c_p(t_2-t_1) [\kappa BT]^*$

V [м³/ч] - расход воздуха

 t_1 [°C] – температура воздуха перед нагревателем t_2 [°C] – температура воздуха за нагревателем ρ_p [кг/м³] - плотность влаж. воздуха, зависит от температуры (1,2 кг/м³ при 20°C)

 $c_{
ho}$ [кДж/кгК] = 1,005 - удельная теплоемкость сухого воздуха

* величина приблизительная

Или / и $Q = V/3600 \cdot \rho_p \cdot (h_2 - h_1) [\kappa BT]$

φ 1/0000 ββ (112 111/[1.21]

 $V[M^3/4]$ - расход воздуха $h_1[KДж/кг]$ - энтальпия воздуха перед нагревателем

h₂ [кДж/кг] - энтальпия воздуха за нагревателем

 $\rho_{p}\, [\text{кг/m}^{3}]$ - плотность влаж. воздуха, зависит от

температуры (1,2 кг/м³ при 20°C)

Температура и относительная влажность воздуха в помещении

 $t_2 > t_1$ $x_2 = x_1$

Человеческое тело постоянно выделяет теплоту, количество которой зависит от физической активности. Для оценки тепловой мощности используется единица МЕТ. Один МЕТ - это 58 Дж, выделяемые с 1 м² поверхности тела за 1 секунду. «Средний» человек имеет наружную поверхность 1,8 м². Температура воздуха в помещении в значительной степени определяет интенсивность теплоотдачи с поверхности тела. Можно считать, что в среднем оптимальной температурой для зимы является 20-22°С, а для летнего периода 22-24°С. Величину относительной влажности внутреннего воздуха рекомендуется поддерживать в пределах от 30 до 65 % (смотри график).

Источники: EN ISO 7730, ASHRAE 55.